使用介質損耗測試儀計算電網損耗及改善降損措施
一、損耗分析
1.1理論線損計算法
線損理論計算方法主要有均方根電流法、平均電流法、*大電流法、*大負荷損失小時法等。平均電流法、*大電流法是由均方根電流法派生出的方法,而*大負荷損失小時法主要適用于電力網的規劃設計。比較有代表性的傳統方法是均方根電流法。
均方根電流法的物理概念是線路中流過的均方根電流所產生的電能損耗,相當于實際負荷在同一時期內所消耗的電能。其計算公式
應用均方根電流法計算10kV配電線路線損主要存在以下問題:
①由于配電變壓器的額定容量不能體現其實際用電量情況,因此對于沒有實測負荷記錄的配電變壓器,用均方根電流核與變壓器額定容量成正比的關系來計算一般不是完全符合實際負荷情況的。
②各分支線和各線段的均方根電流根據各負荷的均方根電流代數相加減而得到,而在一般情況下,實際系統各個負荷點的負荷曲線形狀和功率因數都不相同,因此用負荷的均方根電流直接代數相加減來得到各分支線和各線段的均方根電流不盡合理。這是產生誤差的主要原因。
介質損耗測試儀網損計算法
均方根電流法
均方根電流法原理簡單,易于掌握,對局部電網和個別元件的電能損耗計算或當線路出日處僅裝設電流表時是相當有效的,尤其是在0.4-10kV配電網的電能損耗計算中,該法易于推廣和普及,但缺點是負荷測錄工作量龐大,需24h監測,準確率差,計算精度小,日由于當前我國電力系統運行管理缺乏自動反饋用戶用電信息的手段,給計算帶來困難,所以該法適用范圍具有局限性。
節點等值功率法
節點等值功率法方法簡單,適用范圍廣,對運行電網進行網損的理論分析時,所依據的運行數據來自計費用電能表,即使不知道具體的負荷曲線形狀,也能對計算結果的*大可能誤差作出估計,并且電能表本身的準確級別比電流表要高,又有嚴格的定期校驗制度,因此發電及負荷24h的電量和其他運行參數等原始數據比較準確,且容易獲取。這種方法使收集和整理原始資料的工作大為簡化,在本質上,這種方法是將電能損耗的計算問題轉化為功率損耗的計算問題,或進一步轉化為潮流計算問題,這種方法相對比較準確而又容易實現,因而在負荷功率變化小大的場合下可用于任意網絡線損的計算,井得到較為滿意的結果。但缺點是該法實際計算過程費時費力,且計算結果精度低。因為該法只是通過將實際連續變化的節點功率曲線當作階梯性變化的功率曲線處理或查負荷曲線形狀系數的方式獲取節點等效功率近似地考核系統狀態。介質損耗測試儀
降損措施
1.簡化電網的電壓等級.減少重復的變電容量城市電網改造工程要求做到:從500kV到380/220V之間只經過4次變壓。除東北部分電網采用500kV、220kV、63kV、10kV、380/220V5個等級外。其它電網采用500(330)kV、220kV、110(或35)kV、10kV、380/220V5個等級。即高壓配電電壓在110kV或35kV之間選擇其中之一作為發展方向。非發展方向的網絡采用逐步淘汰或升壓的措施。
2.提高輸電容量,優化利用發電資源
建設新的交流或直流輸電線路,升級現有線路和使現有線路的運行逼近它們的熱穩定極限,是提高輸電容量的三種主要方法。
當采用架空輸電線路,遠距離大容量傳輸電能時,高壓直流輸電線路(HVDC)的效率比高壓交流輸電線路更高一些。在同樣的電壓等級下,HVDC系統的輸電容量是交流線路的2到5倍;而當傳輸的功率相同時,由于直流線路不傳輸無功功率,換流器的損耗僅為傳輸功率的1.0%~1.5%,因此HVDC輸電系統的總損耗要小于交流系統。
提高現有線路的輸電容量,可以提高電壓等級,增加導線截面積及每相的分裂導線數,或采用耐高溫線材。*近耐高溫線材技術的進步,為減輕中短距離輸電線的熱穩定極限的限制提供了一條有效途徑。采用耐高溫線材的輸電線傳輸的電流是普通線材輸電線(例如鋁包鋼增強型導線)的2到3倍,而它的截面直徑與普通導線相同,不會增加桿塔等支撐結構的負擔。在許多情況下,由于電壓約束、穩定性約束和系統運行約束的限制,輸電線路的運行容量遠低于線路的熱穩定極限。許多技術即針對如何提高輸電容量的利用程度而被發明出來。例如,當發生“并聯支路潮流”或“環路潮流”問題時,調相器常被用來消除支路的熱穩定限制。串聯電容補償是另一種遠距離高壓交流輸電線路常用的提高輸電容量的方法?,F在人們利用大功率電力電子技術開發了一系列設備,統稱為柔**流輸電設備,它可以使人們更好地利用輸電線、電纜和變壓器等相關設備的容量。據估計,柔**流輸電設備的推廣應用,可以將現在受電壓約束和穩定約束限制的線路的*大輸電容量提高20%~40%。